производная

производная

 

производная

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

производная
Для функции от одной переменной f(x) — производная df/dx — это скорость ее изменения, т.е. Необходимы различные обобщения этого понятия на более сложные функции. Например, если рассматривается функция многих переменных f (x1, …, xn), то оказывается возможным использовать П. по одной из них (принимая остальные за неизменные). Такая П. называется частной и обозначается df/dx. Любая частная П. есть в свою очередь функция переменных x1, …, xn — поэтому можно рассматривать вторые частные П. Важное свойство вторых частных П. — их симметричность; если функция f непрерывна, имеет непрерывные первые и вторые частные П., то безразлично, в каком порядке функцию дифференцировать: Кроме обозначения производной, указанного выше, используется апостроф ’, например, П.функции f(x) обозначается либо df/dx , либо f’(x). Операция нахождения П. называется дифференцированием функции .Функция, имеющая производную в точке х0, называется дифференцируемой в этой точке., причем она обязательно непрерывна в этой точке. (См. Непрерывная функция) Функция, имеющая производную в каждой точке некоторого интервала, называется непрерывно дифференцируемой на этом интервале (промежутке).
[http://slovar-lopatnikov.ru/]

Тематики

  • экономика
  • электротехника, основные понятия

EN

  • derivative


Справочник технического переводчика. – Интент. 2009-2013.

Игры ⚽ Нужно сделать НИР?

Смотреть что такое "производная" в других словарях:

  • Производная Ли — тензорного поля по направлению векторного поля   главная линейная часть приращения тензорного поля при его преобразовании, которое индуцировано локальной однопараметрической группой диффеоморфизмов многообразия, порождённой полем . Названа в …   Википедия

  • ПРОИЗВОДНАЯ — (derivative) Темп приращения значения функции при приращении ее аргумента в какой либо точке, если сама функция в этой точке определена. На графике первая производная функции показывает угол ее наклона. Если у=f(x), ее первая производная в точке… …   Экономический словарь

  • ПРОИЗВОДНАЯ — ПРОИЗВОДНАЯ, скорость изменения величины математической функции относительно изменений независимой переменной. Производная является выражением одномоментного изменения значения функции f(x) в точке х и определяется соотношением [f(x+h) f(x)]/h с… …   Научно-технический энциклопедический словарь

  • Производная — [derivative]. Для функции от одной переменной  f(x)   производная df/dx это скорость ее изменения, т.е. Необходимы различные обобщения этого понятия на более сложные функции. Например, если рассматривается функция многих переменных f (x1, … …   Экономико-математический словарь

  • ПРОИЗВОДНАЯ — ПРОИЗВОДНАЯ, одно из основных понятий дифференциального исчисления …   Современная энциклопедия

  • ПРОИЗВОДНАЯ — в математике см. Дифференциальное исчисление …   Большой Энциклопедический словарь

  • производная — ПРОИЗВОДНЫЙ, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Производная — ПРОИЗВОДНАЯ, одно из основных понятий дифференциального исчисления.   …   Иллюстрированный энциклопедический словарь

  • Производная — ( ый, ое)  произведённая, образованная от другой, простейшей или основной величины, формы, категории[1]. Содержание 1 Математика 2 Нематематические понятия …   Википедия

  • ПРОИЗВОДНАЯ — одно из основных понятий математич. анализа. Пусть действительная функция f(x) действительного переменного хопределена в нек рой окрестности точки х 0 и существует конечный или бесконечный предел (*) Этот предел и наз. производной от функции f(х) …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»